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Abstract-A linear theory based on the nonparallel flow model is employed to study the onset of longi- 
tudinal vortex instability of laminar mixed convection flow over horizontal and inclined flat plates with 
variable surface temperature, T,(x) - T, = AX”. In the analysis, the streamwise dependence of the dis- 
turbance amplitude functions is taken into account. Neutral stability curves as well as the critical values 
for the parameter G* = Gr~/Re,~f’2 and wave number a* are presented for Prandtl numbers Pr = 0.7, 7, 
100. and 1000 over a range of the exponent values -0.5 < n 4 I.0 and inclination angles 0” < # < 85”. 
For a given Prandtl number and inclination angle, thermal instability is found to decrease as the value of 
the exponent n increases. Also, for given values of the exponent n and Prandtl number Pr, the critical value 
of Gr:/Re:“/* Increases with increasing inclination angle from the horizontal. However, the critical wave 
number a* appears to be unaffected by the inclination angle. The results from the present nonparallel flow 
analysis are compared with available analytical and experimental rest&s from previous studies. The 
nonparallel flow analysis that accounts for the streamwise dependence of the amplitude functions is found 
to have a stabilizing effect as compared with the parallel flow analysis in which the streamwise dependence 

of the disturbance is neglected. 

INTRODUCTION 

THE INSTABILITY of laminar mixed convection flows, 
which may arise in the form of Tollmien-Schlichting 
waves or longitudinal vortex rolls, has been the subject 
of many studies. The longitudinal vortex mode of 
instability arises when a fluid layer heated from below 
or cooled from above induces a buoyancy force com- 
ponent that is normal to the surface. This situation is 
analogous to the occurrence of Goertler vortices in 
boundary-layer flow along a concave wall which are 
induced by a centrifugal force normal to the wall. 
Thus, vortex rolls on a heated flat plate are induced 
by the buoyancy force, whereas those on a concave 
wall are caused by the centrifugal force. 

In almost all of the analytical studies on vortex 
instability of laminar forced or mixed convection flow 
(see, for example, refs. [l-3]), a linear parallel flow 
model is employed, in which the disturbances are 
assumed to be independent of the streamwise direc- 
tion. This approximate analysis has provided critical 
values of Gr_$/Re, *312 that are about two to three orders 
of magnitude lower than those observed in exper- 
iments (see, for example, refs. [4--g]). There is evidence 
from recent studies on the vortex instability of forced 
convection flow [IO-121 and the vortex instability of 
natural convection Ilow over horizontal and inclined 
flat plates [ 13,141 to indicate that the nonparaIle1 flow 
analysis will yield more realistic predictions of the 
instability characteristics, when compared with exper- 
imental data, than the parallel flow analysis. This has 
motivated the present study. 

In this study, vortex instability of laminar mixed 
conv~tion flow over upward-facing, heated hori- 
zontal and inclined fiat plates, with an acute angle tl, 
from the horizontal, is examined for the situation in 
which the surfaced temperature of the plate varies 
with the axial distance x as Z’,(x)-TT, = Ax”. The 
analysis is based on the linear theory using a non- 
parallel flow model. The resulting eigenvalue problem 
for the disturbance amplitude functions was solved by 
an efficient finite-difference method [15] in con- 
junction with Miiller’s shooting procedure. 

Main-flow characteristics, neutral stability curves as 
well as the critical values of Gr~/Re_~3~2 and wave 
number were obtained over a range of inclination 
angles 0” < # < 85”, Prandtl numbers 0.7 < Pr < 
1000, and the exponent values -0.5 < n < 1.0. 

ANALYSIS 

The main-flow and thermalJields 
Attention is first directed to the main-flow and ther- 

mal fields. Consider laminar mixed convection flow 
over horizontal and inclined heated flat plates with 
the surface temperature varying as T,(x) = T, + Ax”, 
where A and n are real constants and T, is the free 
stream temperature. The angle of inclination from the 
horizontal is 4. Let U, be the free stream velocity, 
and let the streamwise and normal coordinates be x 
and y, with the corresponding velocity components U 
and V. The governing boundary-layer equations for 
constant-property fluids under the Boussinesq 
approximation can be written as [16] 
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NOMENCLATURE 

dimensionless azimuthal wave number 
of disturbances 
local friction factor, r,/(pU$/2) 
partial derivative with respect to g 
reduced stream function. ti//(vU,?c)‘~* 
gravitational acceleration 
local Grashof number, 

SBVW(X) - ~cJx3/v2 
Grashof number based on L, 

gB[T,(L) - TmIL31v2 
local heat transfer coefficient 
thermal conductivity 
characteristic length 
exponent in the power-law variation of 
the wall temperature 
local Nusselt number, hx/k 
perturbation pressure 
main-flow pressure 
Prandtl number 
local Reynolds number, U,x/v 
Reynolds number based on L, U,Ljv 
dimensionless amplitude function of 
temperature disturbance 
perturbation temperature 
main-flow temperature 
dimensionless amplitude functions of 
velocity disturbance in the x, y, z 
directions, respectively 
streamwise, normal, and spanwise 
components of perturbation velocity 
streamwise and normal velocity 
components of main flow in the X,J~ 
directions, respectively 
streamwise, normal, and spanwise 
coordinates 

X, Y, Z dimensionless streamwise, normal, and 
spanwise coordinates, defined, 
respectively, as x/L, y/(d), z/(&L). 

Greek symbols 
C? dimensionless wave number of 

disturbances, aX’j* 

P volumetric coefficient of thermal 
expansion 

6 boundary layer thickness 
E dimensioniess parameter, defined as 

Re, Ii2 

B 
pseudo-similarity variabie, y(U,/vx)“* 
dimensionless temperature, 

(T- TCa)I[TW(X) - 7-a21 
K thermal diffusivity of fluid 

:: 

kinematic viscosity of fluid 
buoyancy force parameter, IGr,//Ref 

P density of fluid 

r, local wall shear stress 

Q, angle of inclination from the horizontal 
LlJ stream function. 

Superscripts 
+ dimensionless disturbance quantity 
- scale quantity defined by equation (32) 
* critical condition or dimensionless main 

flow quantity 
h resultant quantity. 

Subscripts 
0 dimensionless amplitude function 
W condition at wall 
Cc condition at free stream. 

au av 
3.; + - = 0 

ay 

flows above and below the plate, respectively. The 
(1) second term on the right-hand side of the same equa- 

aT aT 3'1" 
u;;+viiv=“w. 

The corresponding boundary conditions are 

U= V=O T= 7”w,(x)=T,+A.Y at p=O 

U+U, T-T,, as Y-+cc 

u= u, T = T, at x = 0. (4) 

The first term on the right-hand side of equation (2) 
represents the buoyancy-indu~d streamwise pressure 
gradient, with the plus and minus signs pertaining to 

tron denotes the streamwise component of the buoy- 
ancy force, and the plus and minus signs refer, respec- 
tively, to upward and downward flows. Furthermore, 
equation (2) can be reduced to that for a horizontal 
plate without the streamwise component of the buoy- 
ancy force term when C$ = 0” and to that for a vertical 
plate without the buoyancy-induced streamwise press- 
ure gradient term when 4 = 90’. 

Next, the system of equations (l)-(4) can be trans- 
formed into a dimensionless form as 

,f’“’ + Qf” & CO sin # 
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V+JPrf@-n Prf’9 

=(n+l)Pr<[f.$-@‘$I (6) 

f (LO) = f’(L0) = 0, f’(5, a) = 1 

wL0) = 1, t35,oo) = 0 (7) 

where the pseudo-similarity variable rl(x,y), the 
reduced stream function f (5, q), the dimensionless 
temperature Q(l, q), the buoyancy force parameter 
t(x), the local Reynolds number Rex, and the local 
Grashof number Gr, are as defined in the Nomencla- 
ture. In equations (5)-(7) the primes denote partial 
derivatives with respect to q and Pr is the Prandtl 
number. It is noted here that t(x) measures the mag- 
nitude of the buoyancy force effect and the plus and 
minus signs that appear on the left-hand side of equa- 
tion (5) now pertain to assisting and opposing flows, 
respectively. 

From an order-of-magnitude analysis, it has been 
demonstrated [16] that in equation (5) the buoyancy- 
induced streamwise pressure gradient term can be 
neglected in comparison with the buoyancy force com- 
ponent term if the condition 

q;olRei12 cc tan 4 (8) 

prevails. This condition was shown to provide accur- 
ate main-flow results for 15” < 4 < 90” for all prac- 
tical purposes for rlrn (the dimensionless boundary- 
layer thickness) of about 10 and Re, 2 lo3 [16]. 
Within the framework of the condition (8), equation 
(5) can be reduced to 

f”‘+~ff”+@sinf$=(n+l)~ yg-rg - 
[ at at 1 

(9) 

for 15” < r#~ < 90”. 
On the other hand, the buoyancy force component 

term may be neglected in comparison with the buoy- 
ancy-induced streamwise pressure gradient term when 
the condition 

tan 4 << q5/Re.Ji2 (10) 

holds true for 0” < Q < 15”. Under this condition, 
equation (5) can be reduced to 

f”‘+:,ff”kl Re.~‘.icosm[f118+(i+n)~Odn 

In addition, when 5 Re; ‘I2 cc 1 and <a/a< << 1 for 
small values of 5, equation (11) and equation (6) can 
be reduced to 

f u’+ fff” = 0 (12) 

e”+: Pr ftI’-n Prf’e = 0. (13) 

The flow is most susceptible to the vortex mode of 
instability when r#~ = 0”. The results for 4 = 0” and 
5 = 0 (pure forced convection) have been given in ref. 

]121. 
The main-flow quantities of interest are the axial 

velocity profilef’(5, rl) = U/U,, the temperature pro- 
file 0(5, q), the local Nusselt number NM,, and the local 
friction factor C,. In terms of the dimensionless vari- 
ables, the last two quantities can be expressed, respec- 
tively, by 

Nu, Re; “= = - e’([, 0), 

C, Re”= = 2f”(5,0). X (14) 

The case of uniform wall temperature (UWT) cor- 
responds to n = 0. 

Formulation of the stability problem 
In the present analysis, a linear stability theory is 

employed. In experiments [4-91 the ‘stationary’ longi- 
tudinal vortex rolls have been found to be periodic 
in the spanwise direction z. Thus, the disturbance 
quantities for velocity components a’, v’, iv’, pressure 
p’, and temperature t’ are assumed to be functions of 
(x, y, z). These disturbance quantities are super- 
imposed on the two-dimensional main-flow quantities 
U, V, W = 0, P, and T to obtain the resultant quan- 
tities 0, v, fi, @, and ri as follows : 

^ 
W,Y, 4 = W&Y) +u’(x, y, z) 

q&Y,4 = ~(~,Y)+v’(x,Y,z) 

RX,Y, 4 = W’G, y, 4 

&, Y, 4 = m, Y) + P’k y, 4 

k Y, 4 = Tk Y) + t’(x, Y, 4. (15) 

The resultant quantities given by equation (15) 
satisfy the continuity equation, the Navier-Stokes 
equations, and the energy equation for an incom- 
pressible, three-dimensional steady fluid flow. Sub- 
stituting equation (15) into these equations, sub- 
tracting the two-dimensional main flow, and 
linearizing the disturbance quantities, one can arrive 
at the following disturbance equations : 

!!K+!x+g=, 
ay 

au ad au f u’pJ;i;+vf-+rf~ ay ay 

(16) 

= -- i g +vV’u’+g/I sin q5t’ (17) 

av ad av u~-&+uax+vr-+vati ay ay 

= - f $ +vV%‘+g/I cos &’ (18) 
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UE + Yaw = _ ! !?L +VV2w’ ay p aZ 
(19) 

, 

u~~+U&+v~~+~iil=KV’t’ 
ay 8.v 

(20) 

where V2 = a2/ax2+a2/ay2+d2/dz2 is the Laplacian 
operator. 

The analysis to follow is parallel to that described 
in ref. [12], and some details are omitted. Because the 
disturbances are confined within the boundary layer 
of the main flow, the so-called bottling effect [17], they 
will have length scales different from those of the 
main-flow field [ 18, 191. To verify this, the disturbance 
equations are first nondimensionalized by using the 
length and velocity scales of the main flow 

x=2 
L’ (21) 

one can arrive at a set of disturbance equations ident- 
ical to equations (21)-(25) in ref. [12], except that now 
an additional term e(Gr,/&t) sin ~$t’ appears on the 
right-hand side of the x-momentum equation and the 
term e(Gv,/Rei)t+ in the y-momentum equation is 
replaced with c(Gr,/Ref)cos &+. In this last set of 
equations, one will find that the terms c&+/dz, 
?ajj+ja& E?a*u+/a,F2, &~ih~+jaP, Eza*w+/a82, 

and c2d2tf/a~2 are smaller than the rest of the terms 
in their respective equations and thus these terms can 
be omitted. The omission of these lowest order terms 
in the disturbance equations is consistent with the 
level of approximation of the main flow. With the 
above-mentioned terms deleted and by making use of 
equation (24), the disturbance equations are reduced 
t0 

au+ aw+ 
z+z=o 

(22) U+ au* 
ax + U* g + Rell%’ 

where E = Re; Ii2 and Re, = U, L/v is the Reynolds 
number based on a characteristic length L(x). If 
L = x, then Y = rl and ReL = Re,. It is noted that U*, 
I’*, and 0 and their derivatives with respect to X and 
Y are of the order of 1. Similarly, the disturbance 
quantities can be scaled as 

I 
u+ =u 

u, ’ 
v+ =A_ 

UC0 
p$‘f =2c 

U, 

P’ p+ CT 
p’ Rel” 

c2, t+= 
t’ 

PU& PUm 
~___ (23) 
T, (4 - T, 

where u+, v+, w+, p+, and t+ and their derivatives 
with respect to X and Y are of the order of E. 

Substitution of the dimensionless variables from 
equations (21)-(23) into equations (16)-(20) will give 
rise to a set of conservation equations for the dis- 
turbances that are identical to equations (1 5)-( 19) in 
ref. [12], except that an additional term 
(GrJRei) sin c#d now appears on the right-hand side 
of the x-momentum equation and the term 
(GrJRe:)t+ in the y-momentum equation is replaced 
with (Gr,/Rei) cos c#d. Here, Gr,, = gB[T,(L) - Tm] 
x L3/v2 is the Grashof number based on the charac- 
teristic length L. Furthermore, since Gr,/Ret is of 
the order of 1 and Re, is of the order of E-‘, Gr, 
is of the order of E-~. In these equations one will 
note that there is a term (v+/s) aU*/aY in the x- 
momentum disturbance equation and a term (v’/s) 
x a0jaY in the energy disturbance equation that are 

larger than other terms in the corresponding equa- 
tion by at least an order of (l/e). This means that 
the (X, Y, Z) variables as defined in equation (21) 
are not the appropriate length scales for the distur- 
bances. Thus, by resealing the coordinates for dis- 
turbance quantities along with the disturbance pressure 
in the form 

(& F,Z,,+) = (X, Y,z,p+)E-“2 (24) 

ah+ ak+ 
__ + ??k sin &’ 

=dYZf3Z2 Rez 
(26) 

Re,Il*u+~+U*~+v+~+V*~ 

_ ap+, a%+ aZv+ 

ay ’ ay2 + az2 __ + 2 cos $t+ 2 (27) 

(28) 

u+ ae 
ax + Ii* g + Rek”v+ 

=;[$+g]. (29) 

Note that the main-flow quantities, such as U*, 
a u*jax, au*/a r, v*, a v*/ax, a v*ja r, aeiax, and 
a0/aY can be expressed in terms off(5, q), 6({, 9) and 
their 5 and q derivatives. For example, U* = f’(<, q), 

v* = -x- ‘WK 4 - C(5, II) +25 a.fix]i23 and 
se/a y = x- w (5, rl). 

Next, the pressure terms in equations (27) and (28) 
are eliminated by cross-differentiation and subtrac- 
tion. To remove the terms involving the function w+ 
and its derivatives, the resulting equation is then 
differentiated with respect to 2 once and the sub- 
stitution aw+/aZ = -av+/aY from the continuity 
equation is employed. This operation will yield three 
equations for the disturbance quantities u+, v+, and 
t+. For the nonparallel flow model considered here, 
these quantities are expressed as 

(u+,v+, t+) 

= MX Y), v,K Y), t,(X, 01 exp GaZ) (30) 

where a is the dimensionless azimuthal wave number 
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of the disturbances. That is, based on experimental 
observations, the lon~tudinal vortex rolls are taken 
to be periodic in the spanwise Z-direction, with the 
amplitude functions depending on both X and Y. 

Next, substituting equation (30) into equation (26) 
the combined form of equations (27) and (28) as 
described above, and equation (29), along with the 
introduction of the coordinate transfo~ation from 
(X, Y) to (X, v) through the relationship 

and letting 

c12 = a*X, u = u,, v = v, ReJl’, t = t,, (32) 

one can obtain the following system of partial differ- 
ential equations for the disturbance amplitude func- 
tions u, U, and t 

D2u+a:Du+a:u+a:v+a:t = j-T& (33) 

D*t+d~Dt+d~t+d~~+d~v = Prf’X&, (35) 

with the boundary conditions 

u=v=Dv=t=O at r]=O and q=m. 

(36) 

In equations (33)-(35), the coefficients are given by 

*__ 1’ 
a3 - J-3 a: = c sin 4 

1 
b:= z 

af f-qf+2(ar, 
> 

af b: = ?f’-+qj-“-2a2+< z 

b$ = a4+&x2 af rtf”-f’-2~$- 
> 

bR = -a*(GrJRej”) cos (p = --a2~ ReiiZ cos Q, 

d: = +Pr 
af f-qf’+2tx 

> 
, df= -a2 

d~=~~r(~~-2~~), d:= -PrW (37) 

in which f and 0 and their derivatives with respect to 
5 and 1 are obtained from the main-flow solutions of 
equations (9), (6) and (7). Also, in equations (33)- 
(36), Dk stands for the kth partial derivative with 
respect to q. The boundary conditions (36) arise from 
the vanishing of the disturbances at the wall and in 
the free stream. The condition Dv = 0 results from the 
continuity equation (25) along with w = 0 at rl = 0 
andq= co. 

As the main-flow and thermal fields are functions of 
([, q), it is convenient to express the disturbance am- 
plitude functions u, u, and t also as the functions of 
(5,~). From the g(X) relationship one has 

(38) 

In terms of (r,~), equations (33)-(35) reduce to 

D2u+a,Du+a,u+a3v+a,t = f’l$ (39) 

D4v+b,D3v+b~~2v+b3Dv+b~v 

+b,u+b6t = .f’5$(oiv)+f”T$(D~) 

au 
-a”_n, (40) 

D2t+d,Dt+d2t+d3u+dg = Prs’l; (41) 

along with boundary conditions as given by equation 
(36). The coefficients in equations (39~(41) are 
defined by 

Q, = a:+:qf’, a2 = a:, 0, = a%, a4 = a: 

b, = b:+$qf’, b2 = b’:++/f” 

b, = b:--ia2qf’, b, = 62, b5 = b4, b6 = bb 

d, = d:+$Prqf’, d2 = d:, d3 = d:, d., = df. 

(42) 

Equations (39)-(41), along with the boundary con- 
ditions (36), represent the mathematical system for 
the stability problem. Since equations (39)-(41) are 
partial differential equations, the boundary con- 
ditions as given by equation (36) are not sufficient if 
C$ derivatives of U, v, and t are not set equal to zero. 

As the instability occurs at small r values, a simple 
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approach to solve equations (39)-(41) with good 
approximation is to use the local similarity method 
by neglecting or truncating the terms involving &/a[, 
&jag, and at/at on the right-hand side of these equa- 
tions. This will result in a system of homogeneous 
‘ordinary differential equations’ for the disturbance 
amplitude functions u, L’, and t as represented by 
equations (39)-(41) with their right-hand side terms 

deleted, along with the boundary conditions (36). This 
system of equations constitutes an eigenvalue problem 
of the form 

E(cc, Re)” ; Pr, n, 65) = 0. (43) 

For given values of the buoyancy force parameter 

r = GrJRe,‘, mclination angle $, exponent n, and 
Prandtl number Pr, the value of Re;j’* satisfying equa- 

tion (43) is sought as the eigenvalue for a prescribed 
value of the wave number CI. 

It is noted here that in the instability calculations 
for 0” < 4 < 15”, the main-flow and thermal fields 
were obtained from equations (12) and (13), rather 
than from equations (11) and (6), subject to boundary 
conditions (7). This is because the flow instability 
occurs at very small values of 5 and equations (11) 

and (6) reduce to equations (12) and (13) when 5 K 1. 

NUMERICAL METHOD OF SOLUTION 

The system of equations for the main-flow and ther- 
mal fields, equations (9), (6), and (7) for 15” < 
4 < 90”, was solved by a finite-difference scheme 
in conjunction with a cubic spline interpolation 
method similar to, but modified from, that described 
in ref. [ 151 to provide the main-flow quantities A f’, f”, 
0, and 0’ that are needed in the stability computation as 
well as in the determination of the local Nusselt num- 
ber and the local friction factor. To conserve space, 
the details of the finite-difference method of solution 
are omitted here. The stability problem, described by 

equations (39)-(41) with their right-hand side terms 

deleted and the boundary conditions given by equa- 
tion (36), was solved by a finite-difference scheme 
along with Mtiller’s shooting method. This solution 
method parallels that described in ref. [15] and no 

details need to be given here. Equations (6) and (41) 
will become stiff when the Prandtl number is large. To 
solve stiff differential equations by the finite-difference 
method, an upwind scheme or its equivalent is 
required. In the present study, a finite-difference 
method based on a weighting factor [ 151 is used, which 
enables the numerical scheme to shift automatically 
from the central difference algorithm to the upwind 
difference algorithm, and vice-versa. To proceed with 
numerical calculations of the stability problem, the 
boundary conditions at q = q, are first approximated 
by the asymptotic solutions of the truncated equations 
(39)-(41) at q = q, (i.e. at the edge of the boundary 
layer). Since f” = 0 = 0’ = 0 at q = urn, the asymp- 
totic solutions for u, v, and tat q = qZ can be obtained 
as 

u2 = exp(-mrl,), u? = cxp(-rqx) 

u, =u,=o, u, = exp(-crq,) 

v2 =exp(-mr?,), uj =exp(-ry,) 

a4 = exp(-bqm), t, = exp(-rqr) 

t, = tz = t‘j = 0 (4) 

where 

r = { -Pr C, +[(Pr CI)‘+4cr2]“2}/2 

m = {-C,+[C;+4a2]“‘f/2 

b = {-C, +[C:+4(a2-f”/2)]“2}/2 (45) 

with C, = - (J‘+ 25 af/ag)/2. At any q location, the 
solutions for u, u, and t can be represented by 

u(Lr?) = K,u1(5,u)+K2~2(5,~) 

~(5, ~1 = K, t’ I (5, rl) + K,Gl, ~1 

t(5, rl) = K, ti CL v) + K2f2(5, I?) 

+Kd3(t,v)+K4t4(5,v) (46) 

where K,, K2, K,, and K4 are constants. 
With preassigned values of the buoyancy parameter 

5, inclination angle 4, and exponent n, the main-flow 
solution is first obtained for a fixed Prandtl number, 
Pr. Next, with the wave number CL specified and the 
estimated value of Re:;‘, the finite-difference form of 
the truncated equations (39)-(41), along with bound- 
ary conditions (36), is numerically solved from ;r? = 0 

to rl = r,> ending with the asymptotic solutions for 
u. v, and t at q = ye, The correction for the value of 
Re)/* is then made by Miiller’s shooting method until 

the boundary conditions at the wall are satisfied 
within a tolerance of less than 10mh. This yields a 
converged value of Re_:” as the eigenvalue for given 
values of 5, 4, n, Pr and c(. 

After some numerical experiments, a step size of 

Aq = 0.005 and a value of qa = 10 were found to 
be sufficient for both the main-flow and the stability 
calculations for all inclination angles, 15” < 4 < 90”, 
exponent values -0.5 < n < 1 .O and Pr = 100 and 

1000. However, for the cases of Pr = 0.7 and 7, 
because of the relatively small critical wave numbers 

cc*, convergent solutions were difficult to obtain for 
the step size Aq that was used. To cope with the 
numerical difficulties associated with smaller values of 
Prandtl number, Pr, say Pr = 0.7 and 7, results for 
these two Prandtl numbers were obtained for 4 = 0 
and 85” from which an interpolation method was used 
to obtain the critical Gr.~/Re;23/2 results for all angles 
of inclination. 

RESULTS AND DISCUSSION 

The local Nusselt number in terms of Nu, 
x Re.; “* = - 0’(& 0) and the local friction factor in 
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terms of Cr_ Rei’*/2 = f”({, 0) for Pr = 0.7, 7, 100, 
and 1000 were obtained. To illustrate the effects of the 
exponent n on the friction factor and the local Nusselt 
number, Figs. 1,2, 3 and 4 have been prepared for two 

0 5 10 15 so 25 

< 

FIG. 1. Local friction factor, Pr = 0.7. 

FIG. 2. Local friction factor, Pr = 7. 

1.9 

r 

0.9 

0 

we-__--___ 
,5~-.-._ 

0 5 10 15 PO 25 JO 

FIG. 3. Local Nusselt number. Pr = 0.7. 

FIG. 4. Local Nusselt number, Pr = 7. 

representative Prandtl numbers Pr = 0.7 and 7. It is 
noted that for the case of 5 = 0 (pure forced con- 
vection), the f"(0, 0) value is 0.3321 for all values of 
Pr, n, and 4, It is also mentioned here that the results 
for n = 0 (the UWT case) have been given in ref. [ 161 
only for Pr = 0.7 and 7 over the range of 0 < 5 < 10. 
It can be seen from Figs. 1 and 2 that for a given value 
of the buoyancy force parameter 5, the local friction 
factor decreases with an increase in the exponent n. 
On the other hand, the local Nusselt number increases 
with increasing value of the exponent IZ, Figs. 3 and 
4. Also, a higher inclination angle # gives rise to a 
larger friction factor and a larger Nusselt number. 

In the numerical calculations for the flow insta- 
bility, the buoyancy force parameter 5 was varied 
from 0.001 to 0.1 for all the inclination angles d, and 
exponent values n that were computed. This range 
of buoyancy force parameter covers Reynolds and 
Grashof numbers of practical interest in laminar 
boundary-layer flows. It is pointed out that vortex 
instability of the flow does not exist when the plate is 
vertical, because in this situation there is no normal 
buoyancy force component acting on the plate that is 
responsible for the vortex instability of the flow. To 
determine the stability and instability domains and to 
obtain the critical values of Gr,, Rea, and c( for the 
onset of the vortex instability for various values of the 
exponent n, inclination angle 4, and buoyancy force 
parameter 5, calculations were carried out for 
Pr = 0.7, 7, 100, and 1000. 

Representative neutral stability curves (in the form 
of Reii2 vs CI curves) for Pr = 100 and C#J = 45” are 
plotted in Fig. 5. This figure shows the effect of the 
buoyancy force parameter 5 on the neutral stability 
curves for various values of the exponent n. As 
expected, a larger buoyancy force parameter 5 will 
provide lower critical values of Re:“, i.e. a less stable 
flow. This same trend was also found in refs. [2,3]. 
Also, an increase in the value of n is seen to give a 
larger critical Re.:” value, i.e. a more stable flow. 
Tables 1 and 2 list the minimum critical values of 
Re*“’ and the corresponding wave numbers a* for 
dikerent values of the exponent n, the inclination angle 
$, and the buoyancy force parameter f for Pr = 100 

FIG. 5. The effect of buoyancy force parameter on the neutral 
stability curves for Pr = IO0 and 4 = 45” ; -0.5 $ n G 1 .O. 
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and 1000, respectively. From these tables, one can see 
that a higher Prandtl number gives rise to a higher 
critical Z&z “’ vaIue (except 4 = 0.1) and a larger criti- 
cal wave number a*. 

It is interesting to see the effect of the exponent n 
on the neutral stability curves Gr,/Rej’2 vs LX for 
different inclination angles 4. This is shown in Figs. 
6-8, respectively, for Pr = 0.7, 100, and 1000. To 
avoid crowding, only results for two inclination angles 
are shown in each figure. The results for C#J = 0” (and 
c = 0) for Pr = 100 and 1000 are given in ref. [ 121 and 
are not shown here. It can be seen from these figures 
that as the exponent n increases, the neutral stability 
curve shifts upward to a larger value of Gr.,/Re_:2. 
That is, the flow will become more stable to the vortex 
mode of instability as the exponent n increases. In 
addition, it can be observed that the larger the 
exponent n, the larger is the critical wave number c(* 
(corresponding to the minimum value of Gr,/Re2’2). 
However, the critical wave number appears to be 
unaffected by the inclination angle, which is in agree- 
ment with the experimental results of Sparrow and 
Husar [ZOf. This behavior can be best observed from 
Fig. 9 which is a representative n* vs r$ plot for 
Pr = 100. 

The fact that the flow will become less susceptible 
to the vortex mode of instability as the value of n 
increases can be explained as follows: When n = 0 
there is a step jump in the temperature difference 

a 
FIG. 6. Neutral stability curves for Pr = 0.7; 4 = 0” 

#=SY; -OSGI< 1.0. 

1 2 9 4 5 5 

a 

FIG. 7. Neutral stability curves for Pr = 100; C) = 45”, 
f$=85”;-0.5~n~1.0. 

(T, - T, ) = .4 for all x, whereas for n > 0 the wall 
temperature starts with T, = r, at x = 0 and 
increases with x. For n c 0, it starts with T,,, -+ 00 at 
_Y = 0 and decreases with increasing X. Thus, when 
n < 0 a larger jump in (Tw - T,) occurs at a smaller 
x location than when n = 0. This contributes to an 
earlier onset of the flow instability and hence a smaller 
critical value of Gr,V/Re~2. This same trend was also 
reported in the work of refs. 112,131. 

To determine the onset of the vortex instability, the 
minimum critical values of Gr:/Re_~3’2, denoted by 
G*, from the present calculations for different values 
of n are plotted in Figs. l@-13, respectively, for 
Pr = 0.7. 7, 100, and 1000 over the inclination angles 
0” < b, < 85”. They are also listed in Table 3. It can 
be seen from these figures and the table that the critical 
Gr,*/ReF3!2 value increases with increasing inclination 
angle 4 (for a given Prandtl number) and with increas- 
ing Prandtl number (for a given angle of inclination 
4). This implies that the flow becomes more stable to 
the vortex mode of instability as the plate is tilted 
toward the vertical orientation and that fluids with 
larger Prandtl numbers stabilize the flow. 

As mentioned earlier, numerical di~culties were 
encountered in obtaining neutral stability curves and 
critical values of Gr,:/Re.:3,’ for Pr = 0.7 and 7 
because of the relatively small critical wave number. 
However, ins~ction of Figs. I2 and 13 for Pr = 100 
and 1000 reveals that the G* vs C#J curves are parallel 

a 
FIG. 8. Neutral stability curves for Pr = 1000; (p = 45”, 

t$ = 85”; -0.5 <n < 1.0. 

*.7 O--c15 

1.6 . 

I.5 
0 IO 20 JO 4* 50 60 70 20 SO 

# WegrssJ 
FIG. 9. The critical wave number G(* as a function of fp. 

Pr= 100. 
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FIG. 10. The critical value G* = Gr,*iR~f”~ as a function of 
cp, Pr = 0.1. 

for all n values. This implies that for a given Prandtl 
number there exists a certain ratio between the G* 
values for any two IZ values at a given cfi, This same 
characteristic can also be found between two Prandtl 
numbers for given values of n and #. Thus, if the G* 
values are available at Cp = 0 and 85” for Pr = 0.7 and 
7, the G* values at other angles Q, for these two Prandtl 
numbers can be obtained by an interpolation without 
the need for actual calculations. Table 4 shows the 
ratio of the critical values of G* = Gr:JRe.z3’2 for 
Pr = 1000 and 100 for different exponent values n at 
various angles of inclination. It can be seen from the 
table that for a given n value the G* ratio between the 
two Prandtl numbers, Pr = 1000 and 100, is found to 
remain essentially constant for all angles of incli- 
nation. This means that with the G* ratio for any two 
Prandtl numbers, say Pr = 100 and 0.7, known for a 
given n at two fixed angles 4, say 4, = 0 and 85”, one 
can find the G* values for all other angles between 
4 = 0 and 85” for Pr = 0.7 with the known G* values 
for Pr = 100. 

The G* values for Pr = 0.7 and Q1 = 85” were cai- 
culated and found to be 85,503 for n = 1, 60.613 for 
n = 0.5, 49.310 for n = 0, and 22.461 for rz = -0.5. 
Also, the G* values for # = 0” are, from ref. [12j, 
6.8730, 5.2959, 4.2556, and 1.9853 for n = 1, 0.5, 0, 
and -0.5 for Pr = 0.7. The G* ratios for Pr = 100 
and 0.7 at (p = 0” are then found to be 1.9467 for 
n = 1,2.0822 forn = OS, 1.9182 for n = 0, and 1.9756 

0 10 20 30 40 50 60 70 60 90 

FIG. t I. The critical value G* = Gr,*/Re,t3” as a function of 
4, Pr = 7. 

FE. 12. The critical value G* = GrzjRe_:312 as a function of 
9, Pr = loo. 

for n = -0.5, as compared with 1.9450 for n = 1, 
2.0895 for n = 0.5, 1.9023 for n = 0, and 2.0103 for 
PI = -0.5 at Cp = 85”. Thus, it can be concluded from 
this that the same Gr,*jiPe,*3J2 ratio between two 
Prandtl numbers can be obtained for a given exponent 
n for all angles Cp. With the availability of the G* 
results for Pr = 0.7 and 7 at 9 = 0” [12], and the 
calculated G* results for the same two Prandtt num- 
bers at (t, = KS’, Figs. 10 and 11 were constructed by 
employing the interpolation method, as described. 

Figures 14 and 15 illustrate the critical Rez vs Gr: 
plots for various inclination angles, respectively, for 
Pr = 0.7 and 7. Results from experiments [4,6-81 are 
also included for comparison. A comparison between 
the results from the present analysis and those of the 
parallel flow model f2,33 indicates that an accounting 
of the streamwise dependence of the disturbance 
amplitude functions stabilizes the flow. The results for 
4 = 0” (i.e. the horizontal plate) are taken from ref. 
[12]. Each straight line for a given (p separates the 
stable region above the line from the unstable region 
below the line. Thus, any flow condition dete~ined 
by any combination of Re, and Gr, that lies below a 
straight line represents an unstable main flow situ- 
ation as regards the vortex mode of instability, 
whereas any combination of Re, and Gr, above the 
line represents a stable flow situation. Inspection of 
Figs. 14 and 15 reveals that for a given Reynolds 
number the flow is most susceptible to the vortex 

d . . . . 
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Table 3. The minimum critical value of G* = Gr’J/J?eX+3’* 

(Pr, n) 

I$ = 0” 

Gr~/Re,*‘/2 

cp = 30” 

Gr:/Re,*‘/* 

cp = 45” 

Grz/Re,*‘/’ 

(I~, 1) 13.609 15.718 19.252 27.228 52.603 156.21 
(1ooo, 0.5) Il.243 12.986 15.906 22.496 43.461 129.07 
(1000,0) 8.3628 9.6600 11.833 16.736 32.334 96.020 

(1000, -0.5) 4.0704 4.7034 5.7623 8.1512 15.749 46.772 
(100, 1) 13.380 15.460 18.937 26.785 51.750 153.68 

(100,0.5) 11.027 12.740 15.606 22.075 42.649 126.65 
(100,O) 8.1631 9.4330 11.556 16.347 31.585 93.801 

(100, -0.5) 3.9221 4.5365 5.5599 7.8671 15.203 45.153 
(7% 1) 9.5394 11.022 13.501 19.097 36.896 109.57 

(7,0.5) 7.4243 8.5782 10.508 14.863 28.715 85.276 
(7,O) 4.8184 5.5673 6.8194 9.6460 18.636 55.344 

(7, -0.5) 2.0241 2.3387 2.8647 4.0521 7.8287 23.249 
(0.7, 1) 6.8730 7.9414 9.7285 13.578 26.583 78.942 

(0.7,0.5) 5.2959 6.1191 7.4954 10.602 20.483 60.828 
(0.790) 4.2556 4.9171 6.0230 8.5191 16.459 48.879 

(0.7, - 0.5) 1.9853 2.2939 2.8098 3.9743 7.6786 22.803 

Table 4. The ratio of the minimum critical values G* = Gr,*/Re,*3’2 for Pr = 1000 and 100 

lp= 15” Q, = 30 4 = 45” (p = 60” rp = 75” 4 = 85” 

1 1.0170 1.0170 1.0170 1.0170 1.0165 1.0165 
0.5 1.0195 1.0193 1.0192 1.0191 1.0190 1.0191 
0 1.0243 1.0241 1.0240 1.0238 1.0237 1.0237 

-0.5 1.0373 1.0370 1.0364 1.0361 1.0359 1.0359 

mode of instability when 4 = 0”, that is, when the 
plate is horizontal. This susceptibility to instability 
diminishes as 4 increases, eventually attaining an 
absolutely stable condition when b, = 90” (i.e. when 
the plate is vertical). From Figs. 14 and 15, one can 
see that the results of the present analysis bring the 
predicted critical Re,* and Gr,* values closer to the 
experimental results for air [4, 7,8] and for water [6], 
but large discrepancies in the results still exist between 
the theory and experiments. To remedy the dis- 
crepancy between the two sets of results, further 
analyses using different approaches, such as linear 

FIG. 14. Critical Reynolds number vs critical Grashof num- FIG. 15. Critical Reynolds number vs critical Grashof num- 
ber for various inclination angles, Pr = 0.7. ber for various inclination angles, Pr = 7. 

theory with time-dependent amplitude function or 
nonlinear theory, appear to be in order. 

CONCLUSION 

In this paper, thermal instability of mixed con- 
vection in laminar boundary-layer flow over hori- 
zontal and inclined flat plates with power-law vari- 
ation in the surface temperature has been investigated 
anatytically using the linear theory based on a non- 
parallel flow model. Neutral stability curves as well as 
critical Reynolds number, critical Grashof number, 
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and critical wave numbers are presented for Prandtl 
numbers of 0.7, 7, 100, and 1000, covering a range 
of exponent values -0.5 < n < 1 .O and inclination 
angles 0” < C#J < 85”. The major findings from the pre- 
sent study are : 

(1) For the power-law variation in the wall tem- 
perature, both the critical values of Gr:/R+” and 
wave number a* increase with an increasing value of 

the exponent n for a given Prandtl number Pr or 

inclination angle 4. 
(2) For a given value of the exponent n or Prandtl 

number Pr, the critical value of Grf/Re,F3!2 increases 

with increasing inclination angle I$. However, the criti- 
cal wave number LY* appears to be unaffected by the 

inclination angle. 
(3) The more rigorous analysis based on the non- 

parallel flow model in the present study provides a 
larger critical Grz/Re,*3’2 value than the previous 

analyses based on the parallel flow model, thus bring- 
ing the critical values closer to available experimental 

data. 
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INSTABILITE THERMIQUE NON PARALLELE DE LA CONVECTION MIXTE SUR DES 
PLAQUES PLANES NON ISOTHERMES, HORIZONTALES ET INCLINEES 

R&um&Une theorie linbire basee sur un modble d%coulement non parallele est utiliste pour ttudier 
l’apparition de l’instabilite tourbillonnaire longitudinale de la convection mixte laminaire sur des plaques planes 
horizontales et inclin&es avec temperature parietale non uniforme T,,,(x) - T, = Ax”. Dans cette analyse, 
on tient compte de la variation longitudinale de l’amplitude de la perturbation. Les courbes de stabilitt 
neutre, les valeurs critiques du parametre G* = Gr:/Re, *‘/* et du nombre d’onde a* sont p&sent& pour 
des nombres de Prandtl Pr = 0,7, 7, 100 et 1000, un exposant n tel que -0,5 d n d 1,0 et un angle 
d’inclinaison 0” < 4 < 85”. Pour un nombre de Prandtl et un angle d’inclinaison don&s, l’instabilite 
thermique diminue quand n augmente. Pour des valeurs don&s de n et de Pr, la valeur critique de G* 
croit avec I’angle d’inclinaison. Le nombre d’onde critique a* semble Btre independant de Tangle d’in- 
clinaison. Les rtsultats de cette analyse sont compares a ceux d’autres etudes analytiques et exptrimentales. 
Selon l’btude faite, la dependance de l’amplitude est trouvee avoir un effet stabilisant en :omparaison avec 

le cas de l’analyse de l’ecoulement parallele qui nbglige cette dependance. 
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NICHTPARALLELE THERMISCHE INSTABILITAT BEI MISCHKONVEKTION AN 
NICHTISOTHERMEN HORIZONTALEN UND GENEIGTEN EBENEN PLATTEN 

Zuaammenfasaung-Eine lineare Theorie auf der Grundlage nichtparalleler Striimung wird bei der Unter- 
suchung des Einsetzens der Langswirbelinstabilitat bei laminarer Mischkonvektion an horizontalen und 
geneigten ebenen Platten mit variabler ObertIlchentemperatur (T,.,(x) - T, = A * x”) zu untersuchen. Dabei 
wird eine striimungsabhlngige Funktion der Stijrungsamplitude beriicksichtigt. Kurven neutraler Stabilitat 
sowie kritische Werte des Parameters G* = Gr:/R9:“’ und Wellenzahlen a* werden fiir folgende Parameter 
vorgestellt : Prandtl-Zahl Pr = 0,7: 7: 100 und 1000, Exponenten n von -05 bis 1,O. Neigungswinkel 
0” Q 4 < 85”. Fiir gegebene Werte der Prandtl-Zahl und des Neigungswinkels nimmt die thermische 
lnstabilitat mit steigenden Werten des Exponenten n ab. Bei gegebenen Werten des Exponenten n und der 
Prandtl-Zahl Pr nimmt der kritische Wert von Gr:/Rqf.3’2 mit zunehmendem Neigungswinkel gegeniiber 
der Waagerechten zu. Die kritische Wellenzahl OL* jedoch scheint unabhiingig vom Neigungswinkel zu sein. 
Die Ergebnisse aus der hier vorgestellten Untersuchung mit nichtparalleler Stromung wird mit verfiigbaren 
analytischen und experimentellen Ergebnissen verglichen. Wird die striimungsabhiingige Ampli- 
tudenfunktion bei der nicht-parallelen Stromungsanalyse beriicksichtigt, so bedingt dies einen Sta- 

bilisierungseffekt gegeniiber Modellen, welche diese Abhlngigkeit nicht beriicksichtigen. 

TEI-IJIOBAJI HEYCTO@IHBOCTb HEl-IAPAJIJIEJIbHOI-0 TEHEHMII I-IPM CMEIBAHHOH 
KOHBEKHHH HA HEM3OTEPMM9ECKWX FOPH30HTAJIbHOH B HAKJIOHHOH 

IUIOCKMX I-IJIACTHHAX 

AmsorarmPnmreiirran reopen tia octioae bronenn tienapannenbrtbtx re=remiil ricnonbsyercn arm nccne- 
AOBaHUR B03HURHOBeHHII Il~AOJlbHOfi BHXpBOfi HeYCTOhiBWTH JIaMHHapHOrO IlOTOKa lip” CMCUIPH- 

HOii ROHBeKAHH, 06TeKatOIIJerO rOpH30HTaJIbHyH) H HaKJIOHHyIo IIJIOCKSW. IlJIaCTHHbl C TeMnepaTypOii 

nOEpXHOCTH, H3MeHKKWefiCK n0 3aKOHY T,(X)- T, = Ax”. B aHWIH3e y'4HTbIBaeTC2-l HeOAHOpOAHOCTb 

n0 nOTOKy aMlLNiTyAHblX I$YHKIUifi B03MYlUCHW% npHBOAXTCK HeiiTpaJIbHbIe KpABbIe yCTOkWiBOCTH,a 

rarotce KpnTriYecxne 3tia’Ietinn napaMerpa G* = Gr’J/Re:3’Z x nontionbte wcna a* Qnn Yricen Hpartnrnn 
Pr = 0,7; 7; 100 ri 1000 B rmrepeane 3rtaqemiii noxa3arenn crenetiri -0.5 < n < 1,O H yrnoe natutoria 
O”< qJ < 85”. HpH 3aAaHHblX YHCJle r@WiATJIK H yrJIe HaKAOHa HaiiAeHO,YTO HeyCTOhW,CTb yMeHb- 

waeTcn C pomoM 3HaYeHHn n.KpoMe Toro,npH yKa3aHHux 3HaSeHmx noKa3aTe.m creneHH n H Yricne 
IIpaunrnn Pr KPHTH%CKO~ 3ua~ertue Gr:/Re:“’ rso3pacraeT c yeenmtemieh4 yrna tiatutotia ortiocrrre- 
JIbHO rOpH30HTaJIH. OAHilKO OKa3iUIOCb, 'IT0 KpHTHWCKOe BOAHOBOe 'IHCAO a* He 3aBHCHT 01 yr,,a 

HaK."OHa. Pe3,‘AbTaTrJ npOBe.AeHHOrO aHaJlH3a ~aBHHBaIoTC%l C HMCEO~MHCR ZWiUHTHWCKHMH H 3KC- 

nepHMeHTUbHblMU AaHHblMH npWblAyuutX IiCCJleAOBaHHk AHa.i'IH3 llOKa3aTI, 'IT0 HenapmnenbHbIe 

TeveHm npu yqeTe HeoruIopoAHocm ahmmiTyAHblx $y~iKAkl B noToKe oKa3bmamTcra6HnH3tfpyfo~ee 


