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convection flow on nonisothermal horizontal
and inclined flat plates

H. R. LEE, T. S. CHEN and B. F. ARMALY

Department of Mechanical and Aerospace Engineering and Engineering Mechanics,
University of Missouri~Rolla, Rolla, MO 65401, U.S.A.

(Received 22 January 1991 and in final form 17 July 1991)

Abstract— A linear theory based on the nonparallel flow model is employed to study the onset of longi-
tudinal vortex instability of laminar mixed convection flow over horizontal and inclined flat plates with
variable surface temperature, 7,(x)—T, = Ax". In the analysis, the streamwise dependence of the dis-
turbance amplitude functions is taken into account. Neutral stability curves as well as the critical values
for the parameter G* = Gr*/Re**? and wave number o* are presented for Prandtl numbers Pr = 0.7, 7,
100, and 1000 over a range of the exponent values —0.5 < n < 1.0 and inclination angles 0° < ¢ < 85°.
For a given Prandtl number and inclination angle, thermal instability is found to decrease as the value of
the exponent » increases. Also, for given values of the exponent » and Prandtl number Pr, the critical value
of Gr¥/Re**? increases with increasing inclination angle from the horizontal. However, the critical wave
number a* appears to be unaffected by the inclination angle. The results from the present nonparallel flow
analysis are compared with available analytical and experimental results from previous studies. The
nonparallel flow analysis that accounts for the streamwise dependence of the amplitude functions is found
to have a stabilizing effect as compared with the parallel flow analysis in which the streamwise dependence
of the disturbance is neglected.
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INTRODUCTION

THe INSTABILITY of laminar mixed convection flows,
which may arise in the form of Tollmien—Schlichting
waves or longitudinal vortex rolls, has been the subject
of many studies. The longitudinal vortex mode of
instability arises when a fluid layer heated from below
or cooled from above induces a buoyancy force com-
ponent that is normal to the surface. This situation is
analogous to the occurrence of Goertler vortices in
boundary-layer flow along a concave wall which are
induced by a centrifugal force normal to the wall.
Thus, vortex rolls on a heated flat plate are induced
by the buoyancy force, whereas those on a concave
wall are caused by the centrifugal force.

In almost all of the analytical studies on vortex
instability of laminar forced or mixed convection flow
(see, for example, refs. [1-3]), a linear parallel flow
model is employed, in which the disturbances are
assumed to be independent of the streamwise direc-
tion. This approximate analysis has provided critical
values of Gr*/Re**/? that are about two to three orders
of magnitude lower than those observed in exper-
iments (see, for example, refs. [4-9]). There is evidence
from recent studies on the vortex instability of forced
convection flow [10-12] and the vortex instability of
natural convection flow over horizontal and inclined
flat plates [13, 14] to indicate that the nonparallel flow
analysis will yield more realistic predictions of the
instability characteristics, when compared with exper-
imental data, than the parallel flow analysis. This has
motivated the present study.

In this study, vortex instability of laminar mixed
convection flow over upward-facing, heated hori-
zontal and inclined flat plates, with an acute angle ¢
from the horizontal, is examined for the situation in
which the surfaced temperature of the plate varies
with the axial distance x as T (x)— T, = 4Ax". The
analysis is based on the linear theory using a non-
parallel flow model. The resulting eigenvalue problem
for the disturbance amplitude functions was solved by
an efficient finite-difference method [15] in con-
junction with Miiller’s shooting procedure.

Main-flow characteristics, neutral stability curves as
well as the critical values of Gr¥/Re*** and wave
number were obtained over a range of inclination
angles 0° < ¢ < 85°, Prandtl numbers 0.7 < Pr <
1000, and the exponent values ~0.5 <n < 1.0

ANALYSIS

The main-flow and thermal fields

Attention is first directed to the main-flow and ther-
mal fields, Consider laminar mixed convection flow
over horizontal and inclined heated flat plates with
the surface temperature varying as T, (x) = T+ Ax",
where 4 and » are real constants and T is the free
stream temperature. The angle of inclination from the
horizontal is ¢. Let U_ be the free stream velocity,
and let the streamwise and normal coordinates be x
and y, with the corresponding velocity components U
and V. The governing boundary-layer equations for
constant-property fluids under the Boussinesq
approximation can be written as [16]
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NOMENCLATURE
a dimensionless azimuthal wave number X, Y,Z dimensionless streamwise, normal, and
of disturbances spanwise coordinates, defined,
Cr, local friction factor, t,,/(pUZ/2) respectively, as x/L, y/(eL), z/(eL).
D partial derivative with respect to x
duced stream function. U, x)'?
f reducec . WiOU.x) Greek symbols
g gravitational acceleration . .
o dimensionless wave number of
Gr, local Grashof number, . B
. 37,2 disturbances, aX "
BITW(x) = T Jx"(v B volumetric coefficient of thermal
Gr,. Grashof number based on L, expansion
T (L) — T 1L v? .
BT (L) =T )L}y . é boundary layer thickness
h local heat transfer coefficient . .
.. & dimensionless parameter, defined as
k thermal conductivity Re- 112
L characteristic length - L . U2
. - n pseudo-similarity variable, y(U../vx}"
n exponent in the power-law variation of . .
14 dimensionless temperature,
the wall temperature (T= T ) (To(¥)— T, ]
Nu, local Nusselt number, hx/k S
. . K thermal diffusivity of fluid
P perturbation pressure . Lo .
. v kinematic viscosity of fluid
P main-flow pressure 2
& buoyancy force parameter, |Gr,|/Re;
Pr Prandtl number . .
p density of fluid
Re, local Reynolds number, U x/v
T local wall shear stress
Re, Reynolds number based on L, U, L/v . .
. ) . . ¢ angle of inclination from the horizontal
¢ dimensionless amplitude function of .
. /3 stream function.
temperature disturbance
t perturbation temperature
T main-flow temperature Superscripts
u,v,w dimensionless amplitude functions of + dimensionless disturbance quantity
velocity disturbance in the x, y, z -~ scale quantity defined by equation (32)
directions, respectively * critical condition or dimensionless main
u,v',w streamwise, normal, and spanwise flow quantity
components of perturbation velocity A resultant quantity.
U,V streamwise and normal velocity
components of main flow in the x, » Subscripts
directions, respectively 0 dimensionless amplitude function
x,y,z slreamwise, normal, and spanwise w condition at wall
coordinates o condition at free stream.
é{] + @K —0 o flows above and below the plate, respectively. The
éx 'y second term on the right-hand side of the same equa-
} . tion denotes the streamwise component of the buoy-
U ‘?,(_] +V 0_U = +gfcos b i J (T—T,)dy ancy force, and the plus and minus signs refer, respec-
dx dy T éx ), T tively, to upward and downward flows. Furthermore,
U equation {2) can be reduced to that for a horizontal
+gB(T—T,)sinp+v e (2) plate without the streamwise component of the buoy-
v ancy force term when ¢ = 0° and to that for a vertical
or oT 02T plate without the buoyancy-induced streamwise press-
Uso Vo =k, () ure gradient term when ¢ = 90°.

Ox 133% oy

The corresponding boundary conditions are

U=V=0 T=T,()=T,+4x" at y=0
U-U, T->T, as Y-
U=U, T=T, at x=0 4)

The first term on the right-hand side of equation (2}
represents the buoyancy-induced streamwise pressure
gradient, with the plus and minus signs pertaining to

Next, the system of equations (1)~(4) can be trans-
formed into a dimensionless form as

S £ E0sin ¢

iﬁReC"ZCOS¢[%”0+(2!+")_[ VOdn
"

* 30 Ly
(5)
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O +3Prf&—nPrfo

= (n+1)Pr¢[f@—e' Q] (6)

o 0o¢
f60) =0 =0, f(ow)=1
68,00 =1, 6(f,0)=0 9

where the pseudo-similarity variable n(x,y), the
reduced stream function f(£,7), the dimensionless
temperature 0(¢,n), the buoyancy force parameter
£(x), the local Reynolds number Re,, and the local
Grashof number Gr, are as defined in the Nomencla-
ture. In equations (5)—(7), the primes denote partial
derivatives with respect to 5 and Pr is the Prandtl
number. It is noted here that £(x) measures the mag-
nitude of the buoyancy force effect and the plus and
minus signs that appear on the left-hand side of equa-
tion (5) now pertain to assisting and opposing flows,
respectively.

From an order-of-magnitude analysis, it has been
demonstrated [16] that in equation (5) the buoyancy-
induced streamwise pressure gradient term can be
neglected in comparison with the buoyancy force com-
ponent term if the condition

No/Re)? « tan ¢ ®

prevails. This condition was shown to provide accur-
ate main-flow results for 15° < ¢ < 90° for all prac-
tical purposes for #,, (the dimensionless boundary-
layer thickness) of about 10 and Re, > 10° [16].
Within the framework of the condition (8), equation
(5) can be reduced to

Lof . of
g 6?]

®

S+ ff £80sin ¢ = (n+1)€[f

for 15° < ¢ < 90°.

On the other hand, the buoyancy force component
term may be neglected in comparison with the buoy-
ancy-induced streamwise pressure gradient term when

the condition
tan ¢ « n,./Rel’? (10)

holds true for 0° < ¢ < 15°. Under this condition,
equation (5) can be reduced to

1 0
I ffr £ Re!”2008¢[§ n9+(%+n)j 6 dn
n

* 00 o o
+(n+l)éJ aﬁédﬂ]=(n+l)é[f’%_ ,é]
an

In addition, when ¢ Re; V> « 1 and ¢0/0¢ « 1 for
small values of £, equation (11) and equation (6) can
be reduced to

[ ff =0 (12)
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The flow is most susceptible to the vortex mode of
instability when ¢ = 0°. The results for ¢ = 0° and
¢ = 0 (pure forced convection) have been given in ref.
[12].

The main-flow quantities of interest are the axial
velocity profile /7 (&, 1) = U/U,, the temperature pro-
file 8(&, i), the local Nusselt number Nu,, and the local
friction factor C; . In terms of the dimensionless vari-
ables, the last two quantities can be expressed, respec-
tively, by

Nux Rex_]/z = '—9,(510)’

Cr, Re,/? = 2f"(£,0). (14
The case of uniform wall temperature (UWT) cor-
responds to n = 0.

Formulation of the stability problem

In the present analysis, a linear stability theory is
employed. In experiments [4-9] the ‘stationary’ longi-
tudinal vortex rolls have been found to be periodic
in the spanwise direction z. Thus, the disturbance
quantities for velocity components ', v’, w’, pressure
»’, and temperature ¢’ are assumed to be functions of
(x,y,z). These disturbance quantities are super-
imposed on the two-dimensional main-flow quantities
U, V, W=20, P, and T to obtain the resultant quan-
tities U, ¥, W, P, and T as follows

U(x,y,2) = U(x,y) +u/(x,y,2)
V(x,y,2) = V(x,y)+v'(x,9,2)
W(x,y,z) = w'(x,y,2)

P(x,y,2) = P(x,y)+p'(x,,2)

T(x,y,2) = T(x,») +1(x,,2). (15)

The resultant quantities given by equation (15)
satisfy the continuity equation, the Navier—Stokes
equations, and the energy equation for an incom-
pressible, three-dimensional steady fluid flow. Sub-
stituting equation (15) into these equations, sub-
tracting the two-dimensional main flow, and
linearizing the disturbance quantities, one can arrive
at the following disturbance equations:

ou ' ow

6x+ 6y+ pe =0 (16)
L L L
g ax Y oy dy

1 op’ s, . ,

= x +vWa +gBsingr  (17)
,_(7‘_V+Uav’ ,QI:+ o’
¥ ox 6x+v Oy dy

1dp
= ———IL+VV2v’+gﬂcos¢t’ (18)

p oy
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U§+ 5" T pez +yViy (19)
o7 or oT or ,
U —~+U--+v f+V~— KV (20)

ax Vax Ve ey

where V? = 0%/0x*+8%/0y*+ 67/0z* is the Laplacian
operator.

The analysis to follow is parallel to that described
in ref. [12], and some details are omitted. Because the
disturbances are confined within the boundary layer
of the main flow, the so-called bottling effect [17], they
will have length scales different from those of the
main-flow field [18, 19]. To verify this, the disturbance
equations are first nondimensionalized by using the
length and velocity scales of the main flow

= =7 -z
Y=7» Y= L @D
U 14 T-T,
L pn— = = ~%
v Uoo ’ ” SUoo ’ Tw(x)_Too (22)

where ¢ = Rej "> and Re, = U, L/v is the Reynolds
number based on a characteristic length L(x). If
L = x,then Y = nand Re, = Re,. Itisnoted that U*,
V*, and 6 and their derivatives with respect to X and
Y are of the order of 1. Similarly, the disturbance
quantities can be scaled as

U v W
ut = vt =——, wt=
Uac ’ Uoo ’ Uoo
+ 14 p Re,”? + 4
e e U T nwer, @

where u™, v*, w*, p*, and r* and their derivatives
with respect to X and Y are of the order of ¢.

Substitution of the dimensionless variables from
equations (21)—(23) into equations (16)—(20) will give
rise to a set of conservation equations for the dis-
turbances that are identical to equations (15)—(19) in
ref. [12], except that an additional term
(Gr,/Re}) sin ¢ now appears on the right-hand side
of the x-momentum equation and the term
(Gr,/Re})r" in the y-momentum equation is replaced
with (Gr,/Re})cos ¢t*. Here, Gr, = gB[T. (L)~ T,]
x L3/v? is the Grashof number based on the charac-
teristic length L. Furthermore, since Gr,/Re} is of
the order of 1 and Re, is of the order of £~ 2, Gr,
is of the order of ¢ In these equations one will
note that there is a term (v*/e)dU*/dY in the x-
momentum disturbance equation and a term (v*/e)
x 80/3Y in the energy disturbance equation that are
larger than other terms in the corresponding equa-
tion by at least an order of (1/¢). This means that
the (X, Y, Z) variables as defined in equation (21)
are not the appropriate length scales for the distur-
bances. Thus, by rescaling the coordinates for dis-
turbance quantities along with the disturbance pressure
in the form

X, V.Zp")=(X,Y,Z,pT)e /2 (24)
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one can arrive at a set of disturbance equations ident-
ical to equations (21)—(25) in ref. [12], except that now
an additional term e(Gr,/Re?)sin ¢t* appears on the
right-hand side of the x-momentum equation and the
term &(Gr./Re;)t™ in the y-momentum equation is
replaced with &(Gr,/Re})cos ¢¢*. In this last set of
equations, one will find that the terms &dut/0X,
e20pt oK, &0t |oX?, £20%T)0X?, 20°wtjoX?,
and £°0%t*/0X? are smaller than the rest of the terms
in their respective equations and thus these terms can
be omitted. The omission of these lowest order terms
in the disturbance equations is consistent with the
level of approximation of the main flow. With the
above-mentioned terms deleted and by making use of
equation (24), the disturbance equations are reduced
to

%”% + %WZ: =0 (25)
aa(; U a; erv! 6@? - aau;
=.‘§)’jz %;:+2§sin¢t* (26)
Re[”zu*aaLX*wLU ZLX+ *a(;;j—#V*%%;
- ‘Z’Y ¥ Ej;;: (ZZZ: Lo scos g1t (27)
T LA YL L ) ?f_’Yi otwr
oxX aY 0z T v Y ez
(28)
u %+U*Z§, Re}'*v +§§,+V*it;
]

Note that the main-flow quantities, such as U*,
oU*/0X, OU*[QY, V*, 0V*/oX, 0V*/0Y, d6/0X, and
00/2Y can be expressed in terms of f(&, 1), 6(&,n) and
their ¢ and 5 derivatives. For example, U* = f"(£, 1),
V* = —X"'"2[f(&,m)—nf' & m+2£8f/0¢)/2, and
00/0Y = X~ '20' (&, n).

Next, the pressure terms in equations (27) and (28)
are eliminated by cross-differentiation and subtrac-
tion. To remove the terms involving the function w*
and its derivatives, the resulting equation is then
differentiated with respect to Z once and the sub-
stitution Ow*/0Z = —0dv*/0Y from the continuity
equation is employed. This operation will yield three
equations for the disturbance quantities 4™, v*, and
t*. For the nonparallel flow model considered here,
these quantities are expressed as
ut,o*,t%)

= [u,(X, YV),v,(X, Y), t,(X, V)]exp (iaZ) (30)

where « is the dimensionless azimuthal wave number
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of the disturbances. That is, based on experimental
observations, the longitudinal vortex rolis are taken
to be periodic in the spanwise Z-direction, with the
amplitude functions depending on both X and Y.

Next, substituting equation (30) into equation (26),
the combined form of equations (27) and (28) as
described above, and equation (29), along with the
introduction of the coordinate transformation from
(X, Y) to (X, n) through the relationship

i) i)
— yu2 Yo y-2 Y
Y=Xx"1, oY X on
(7 d on 0
and letting
w*=a’X, u=u, v=v,Rel? t=t, (32

one can obtain the following system of partial differ-
ential equations for the disturbance amplitude func-
tions u, v, and ¢

D*u+a*Du+afu+atvtait = X — (33)

D*v+btD v+ b3D*v -+ b%Dv + by

+b§u+bgz=f'x—(92 )+f”X +(0v)

ov
4.—2’—
anaX

at
D*t4-d*Dt+d%t +dtu+dtv = P’f'X;ﬁ?’

(34

(3%

with the boundary conditions

u=v=Dv=t=0 at n=0 and =0

(36)
In equations (33)—(35), the coeflicients are given by
f

(f""lf +2¢ ac)
1 " af’

=32 )

at=~f" ai={Csing

= (f nf +2¢ aé)

by =3f —inf"—24 +é%

w(r-nr+2¢ %)

é1‘=a‘+%a2(nf" _ -2t a’;)

by = 1"~

1917
SRV S A |
(f NS4 et S 452@)

b¥ = —a’(Gr,/Re}*)cos ¢ = —a’E Rel*cos ¢

dt =P (f nf 428 a’;) = —a?

d%= 1P (t;é’ 2¢ C) dy=—Pr¥ (37
in which f and @ and their derivatives with respect to
¢ and n are obtained from the main-flow solutions of
equations (9), (6) and (7). Also, in equations (33)-
(36), D* stands for the kth partial derivative with
respect to 5. The boundary conditions (36) arise from
the vanishing of the disturbances at the wall and in
the free stream. The condition Dy = 0 results from the
continuity equation (25) along with w=0at n =10
andn = 0
As the main-flow and thermal fields are functions of
(&, ), it is convenient to express the disturbance am-
plitude functions u, v, and ¢ alsc as the functions of
(&, ). From the £(X) relationship one has
é 0 d¢ o on é , 0
Yox~Yeeax T aax = Moy
(3%

In terms of (&, ), equations (33)—(35) reduce to

D*u+a,\Du+autaw+ast= [’ f (39

5
D*o+b,D3+b,D%v+b,Dv+bw

thsutbet =85 (Dzv)+f" é(Dv)

-a2f'f§—g (40)

Dt+d Dt+dyt+dyu+dp=Prf’ rf “1)

65
along with boundary conditions as given by equation
(36). The coefficients in equations (39)-(41) are
defined by

a,=at+mf’, a,=a%, a;=at, a,=a}
by =bt+nf’, by=>bi+inf"
by =by—3a’nf", by=0b%, bs=0b% bs=0>bt
dy=d*+1Pryf’, dy=d%t d,=d% d,=d%
(42)

Equations (39)~(41), along with the boundary con-
ditions (36), represent the mathematical system for
the stability problem. Since equations (39)—-(41) are
partial differential equations, the boundary con-
ditions as given by equation (36) are not sufficient if
& derivatives of u, v, and 7 are not set equal to zero.

As the instability occurs at small £ values, a simple
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approach to solve equations (39)-(41) with good
approximation is to use the local similarity method
by neglecting or truncating the terms involving éu/d¢,
Ov/d&, and J¢/d¢ on the right-hand side of these equa-
tions. This will result in a system of homogeneous
‘ordinary differential equations’ for the disturbance
amplitude functions u, v, and ¢ as represented by
equations (39)—(41) with their right-hand side terms
deleted, along with the boundary conditions (36). This
system of equations constitutes an eigenvalue problem
of the form

E(a,Re)?; Pr.n, ¢, &) =0. (43)

For given values of the buoyancy force parameter
¢ = Gr,/Re?, inclination angle ¢, exponent n, and
Prandtl number Pr, the value of Re,'? satisfying equa-
tion (43) is sought as the eigenvalue for a prescribed
value of the wave number o.

It is noted here that in the instability calculations
for 0° < ¢ < 15°, the main-flow and thermal fields
were obtained from equations (12) and (13), rather
than from equations (11) and (6), subject to boundary
conditions (7). This is because the flow instability
occurs at very small values of & and equations (11)
and (6) reduce to equations (12) and (13) when & « 1.

NUMERICAL METHOD OF SOLUTION

The system of equations for the main-flow and ther-
mal fields, equations (9), (6), and (7) for 15° <
¢ <90°, was solved by a finite-difference scheme
in conjunction with a cubic spline interpolation
method similar to, but modified from, that described
in ref. [15] to provide the main-flow quantities f, 1*, /",
0, and 0’ that are needed in the stability computation as
well as in the determination of the local Nusselt num-
ber and the local friction factor. To conserve space,
the details of the finite-difference method of solution
are omitted here. The stability problem, described by
equations (39)—(41) with their right-hand side terms
deleted and the boundary conditions given by equa-
tion (36), was solved by a finite-difference scheme
along with Miiller’s shooting method. This solution
method parallels that described in ref. [15] and no
details need to be given here. Equations (6) and (41)
will become stiff when the Prandtl number is large. To
solve stiff differential equations by the finite-difference
method, an upwind scheme or its equivalent is
required. In the present study, a finite-difference
method based on a weighting factor [15] is used, which
enables the numerical scheme to shift automatically
from the central difference algorithm to the upwind
difference algorithm, and vice-versa. To proceed with
numerical calculations of the stability problem, the
boundary conditions at = n,, are first approximated
by the asymptotic solutions of the truncated equations
(39)—(41) at # = 5, (i.e. at the edge of the boundary
layer). Since f” =0 =0’ = 0 at 5 = 5, the asymp-
totic solutions for u, v, and t at n = %, can be obtained
as

H. R. LEE et al.

Uy =exp(—rm.,)
v; =exp(—an,)
vy = exp{—mn..),

Uy = eXp(_b”lm)a

uy = exp (—mn..),
u, =u, =0,
U3 = exp (—rny,)

t; = exp (=)

o=ty =1, = (44)
where
r={=PrC,+[(PrC)*+40’1"2},2
m={—C,+[Ci+4a?]"?}2
b={—C/+[Ci+4(’—f"/D]'?})2  (45)

with C), = —(f+2£0f/08)/2. At any # location, the
solutions for u, v, and 7 can be represented by

u(€,n) = K, (& 1)+ Kuy(E )
+ Kyus (&, n) + Kaua (€, m)

v(&,n) = Ko (&, M)+ K. (8, 1)
+K505(8,m) + Kava(E,m)

1E,n) = K1, (&) + Koo (&)
+Kst3(8.n) + KatalS,m)

where K|, K,, K5, and K, are constants.

With preassigned values of the buoyancy parameter
¢, inclination angle ¢, and exponent #, the main-flow
solution is first obtained for a fixed Prandtl number,
Pr. Next, with the wave number a specified and the
estimated value of Re!/?, the finite-difference form of
the truncated equations (39)~(41), along with bound-
ary conditions (36), is numerically solved from n =0
to n = 754, ending with the asymptotic solutions for
u, v, and ¢ at 5 = 5. The correction for the value of
Rel’? is then made by Miiller’s shooting method until
the boundary conditions at the wall are satisfied
within a tolerance of less than 107 % This yields a
converged value of Re)'? as the eigenvalue for given
values of &, ¢, n, Pr and a.

After some numerical experiments, a step size of
An =0.005 and a value of 5, = 10 were found to
be sufficient for both the main-flow and the stability
calculations for all inclination angles, 15° < ¢ < 90°,
exponent values —0.5 <n < 1.0 and Pr= 100 and
1000. However, for the cases of Pr=10.7 and 7,
because of the relatively small critical wave numbers
a*, convergent solutions were difficult to obtain for
the step size An that was used. To cope with the
numerical difficulties associated with smaller values of
Prandtl number, Pr, say Pr= 0.7 and 7, results for
these two Prandtl numbers were obtained for ¢ = 0
and 85° from which an interpolation method was used
to obtain the critical Gr¥/Re**? results for all angles
of inclination.

(46)

RESULTS AND DISCUSSION

The local Nusselt number in terms of Nu,
x Re; Y2 = —@'(£,0) and the local friction factor in
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terms of C; Re;/*/2 = f"(£,0) for Pr=20.7, 7, 100,
and 1000 were obtained. To illustrate the effects of the
exponent n on the friction factor and the local Nusselt
number, Figs. 1, 2, 3 and 4 have been prepared for two

[« 5 10 15 20 25 30

15

-8 (e,0)

TR

F16. 4. Local Nusselt number, Pr = 7.
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representative Prandtl numbers Pr = 0.7 and 7. It is
noted that for the case of £ =0 (pure forced con-
vection), the (0, 0) value is 0.3321 for all values of
Pr, n, and ¢. It is also mentioned here that the results
for n = 0 (the UWT case) have been given in ref. [16]
only for Pr = 0.7 and 7 over the range of 0 < ¢ < 10.
It can be seen from Figs. 1 and 2 that for a given value
of the buoyancy force parameter &, the local friction
factor decreases with an increase in the exponent n.
On the other hand, the local Nusselt number increases
with increasing value of the exponent n, Figs. 3 and
4. Also, a higher inclination angle ¢ gives rise to a
larger friction factor and a larger Nusselt number.

In the numerical calculations for the flow insta-
bility, the buoyancy force parameter ¢ was varied
from 0.001 to 0.1 for all the inclination angles ¢ and
exponent values »# that were computed. This range
of buoyancy force parameter covers Reynolds and
Grashof numbers of practical interest in laminar
boundary-layer flows. It is pointed out that vortex
instability of the flow does not exist when the plate is
vertical, because in this situation there is no normal
buoyancy force component acting on the plate that is
responsible for the vortex instability of the flow. To
determine the stability and instability domains and to
obtain the critical values of Gr,, Re,, and a for the
onset of the vortex instability for various values of the
exponent n, inclination angle ¢, and buoyancy force
parameter £, calculations were carried out for
Pr=0.7,7, 100, and 1000.

Representative neutral stability curves (in the form
of Rel’? vs a curves) for Pr= 100 and ¢ = 45° are
plotted in Fig. 5. This figure shows the effect of the
buoyancy force parameter ¢ on the neutral stability
curves for various values of the exponent n. As
expected, a larger buoyancy force parameter ¢ will
provide lower critical values of Re!’?, i.e. a less stable
flow. This same trend was also found in refs. {2, 3].
Also, an increase in the value of » is seen to give a
larger critical Re!* value, i.e. a more stable flow.
Tables 1 and 2 list the minimum critical values of
Re*'"? and the corresponding wave numbers a* for
different values of the exponent », the inclination angle
¢, and the buoyancy force parameter ¢ for Pr = 100

rel/?

FI1G. 5. The effect of buoyancy force parameter on the neutral
stability curves for Pr= 100and ¢ =45°; -0.5<n< 1.0
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and 1000, respectively. From these tables, one can see
that a higher Prandt! number gives rise to a higher
critical Re¥'? value (except £ = 0.1) and a larger criti-
cal wave number o*.

It is interesting to see the effect of the exponent #
on the neutral stability curves Gr./Re¥* vs a for
different inclination angles ¢. This is shown in Figs.
6-8, respectively, for Pr=0.7, 100, and 1000. To
avoid crowding, only results for two inclination angles
are shown in each figure. The results for ¢ = 0° (and
£ = 0) for Pr = 100 and 1000 are given in ref. [12] and
are not shown here. It can be seen from these figures
that as the exponent n increases, the neutral stability
curve shifts upward to a larger value of Gr./Re*.
That is, the flow will become more stable to the vortex
mode of instability as the exponent » increases. In
addition, it can be observed that the larger the
exponent #, the larger is the critical wave number o*
(corresponding to the minimum value of Gr./ReY?).
However, the critical wave number appears to be
unaffected by the inclination angle, which is in agree-
ment with the experimental results of Sparrow and
Husar [20]. This behavior can be best observed from
Fig. 9 which is a representative o* vs ¢ plot for
Pr = 100.

The fact that the flow will become less susceptible
to the vortex mode of instability as the value of n
increases can be explained as follows: When n =0
there is a step jump in the temperature difference

Gry /Re/ 2

Fig. 6. Neutral stability curves for Pr=0.7; ¢ =0°

b =85; ~05<n<10.

10

Pr=100

3/2
Ae,

6ry /

FiG. 7. Neutral stability curves for Pr = 100; ¢ = 45°,
¢ =85, -05<n<10

H. R. Lk et al.

(T.,—T.,) = 4 for all x, whereas for n > 0 the wall
temperature starts with T,=T, at x=0 and
increases with x. For n < 0, it starts with 7, — o0 at
x =0 and decreases with increasing x. Thus, when
n < 0 a larger jump in (T, — T.,) occurs at a smaller
x location than when n = 0. This contributes to an
earlier onset of the flow instability and hence a smaller
critical value of Gr./Re?. This same trend was also
reported in the work of refs. {12, 13].

To determine the onset of the vortex instability, the
minimum critical values of Gr¥/Re*¥?, denoted by
G*, from the present calculations for different values
of n are plotted in Figs. 10-13, respectively, for
Pr=0.7,7,100, and 1000 over the inclination angles
0° < ¢ < 85°. They are also listed in Table 3. It can
be seen from these figures and the table that the critical
Gr*/Re**? value increases with increasing inclination
angle ¢ (for a given Prandtl number) and with increas-
ing Prandtl number (for a given angle of inclination
¢). This implies that the flow becomes more stable to
the vortex mode of instability as the plate is tilted
toward the vertical orientation and that fluids with
larger Prandtl numbers stabilize the flow.

As mentioned earlier, numerical difficulties were
encountered in obtaining neutral stability curves and
critical values of Gr¥/Re**? for Pr=0.7 and 7
because of the relatively small critical wave number.
However, inspection of Figs. 12 and 13 for Pr = 100
and 1000 reveals that the G* vs ¢ curves are parallel

10

Fr=1000

e
x

Gry, /Re

Fic. 8. Neutral stability curves for Pr= 1000; ¢ = 45°,
$=85; -05<ng 10

2.5
2.4}
2.3} Pr=100
2.2} =1
2.1 =05
a* 2r n=g
1.9F
1.8
iy n=-05
1.6
18 0 2o 30 46 s6 80 70 80 80
¢ {degran}
Fic. 9. The critical wave number «* as a function of ¢,
Pr=100.
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F1G. 10. The critical value G* = Gr¥ Re*¥? as a function of
&, Pr=0.1.

for all # values. This implies that for a given Prandtl
number there exists a certain ratio between the G*
values for any two n values at a given ¢. This same
characteristic can also be found between two Prandtl
numbers for given values of n and ¢. Thus, if the G*
values are available at ¢ = 0 and 85° for Pr = 0.7 and
7, the G* values at other angles ¢ for these two Prandtl
numbers can be obtained by an interpolation without
the need for actual calculations. Table 4 shows the
ratio of the critical values of G* = Gr¥/Re**? for
Pr = 1000 and 100 for different exponent values n at
various angles of inclination. It can be seen from the
table that for a given » value the G* ratio between the
two Prandtl numbers, Pr = 1000 and 100, is found to
remain essentially constant for all angles of incli-
nation. This means that with the G* ratio for any two
Prandtl numbers, say Pr = 100 and 0.7, known for a
given n at two fixed angles ¢, say ¢ = 0 and 85°, one
can find the G* values for all other angles between
¢ = 0 and 85° for Pr = 0.7 with the known G* values
for Pr = 100.

The G* values for Pr = 0.7 and ¢ = 85° were cal-
culated and found to be 85.503 for n = 1, 60.613 for
n=0.5, 49.310 for n = 0, and 22.461 for n = —0.5.
Also, the G* values for ¢ = 0° are, from ref. [12],
6.8730, 5.2959, 4.2556, and 19853 forn =1, 0.5, 0,
and —0.5 for Pr=0.7. The G* ratios for Pr = 100
and 0.7 at ¢ = 0° are then found to be 1.9467 for
n=1,2.0822forn = 0.5,19182forn = 0,and 1.9756

10",

105} Pr=7 3

a5

o

a* -5
10‘
16°

o 10 20 30 40 50 50 70 80 0
¢ (degrea)
F1G. 1. The critical value G* = Gr¥/Re}* as a function of
&, Pr=1.
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FiG. 12. The critical value G* = Gr¥/Re*¥? as a function of
¢, Pr = 100.

for n= —0.5, as compared with 1.9430 for n= 1,
2.0895 for n = 0.5, 1.9023 for n = 0, and 2.0103 for
n= ~0.5at ¢ = 85° Thus, it can be concluded from
this that the same Gr¥*/Re*V” ratio between two
Prandt] numbers can be obtained for a given exponent
n for all angles ¢. With the availability of the G*
results for Pr=0.7 and 7 at ¢ = 0° [12], and the
calculated G* results for the same two Prandtl num-
bers at ¢ = 85°, Figs. 10 and 11 were constructed by
employing the interpolation method, as described.
Figures 14 and 15 illustrate the critical Re¥ vs Gr}
plots for various inclination angles, respectively, for
Pr =07 and 7. Results from experiments [4, 6-8] are
also included for comparison. A comparison between
the results from the present analysis and those of the
parallel flow model {2, 3] indicates that an accounting
of the streamwise dependence of the disturbance
amplitude functions stabilizes the flow. The resuits for
¢ == 0° (i.e. the horizontal plate} are taken from ref.
[12]. Each straight line for a given ¢ separates the
stable region above the line from the unstable region
below the line. Thus, any flow condition determined
by any combination of Re, and Gr, that lies below a
straight line represents an unstable main flow situ-
ation as regards the vortex mode of instability,
whereas any combination of Re, and Gr, above the
line represents a stable flow situation. Inspection of
Figs. 14 and 15 reveals that for a given Reynolds
number the flow is most susceptible to the vortex

10

RPre=1000
10k

Gofius

10

10°
0 40 20 30 40 S0 60 70 8 90

¢ {degree)

Fic. 13, The critical value G* = Gr¥/Re**? as a function of
&, Pr = 1000.
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Table 3. The minimum critical value of G* = Gr*/Re**?
¢=0° ¢ = 30° ¢ =45° ¢ = 60° ¢ =175° ¢ =85
(Pr,n) Gr*/Re**? Gr¥/Re*¥? Gr¥/Re*¥? Gr¥/Re?*? Gr¥/Re;? Gr¥/Re*¥?
{1000, 1) 13.609 15.718 19.252 27.228 52.603 156.21
(1000, 0.5) 11.243 12.986 15.906 22.496 43.461 129.07
(1000, 0) 8.3628 9.6600 11.833 16.736 32.334 96.020
(1000, —0.5) 4.0704 4.7034 5.7623 8.1512 15.749 46.772
(100, 1) 13.380 15.460 18.937 26.785 51.750 153.68
(100, 0.5) 11.027 12.740 15.606 22.075 42.649 126.65
(100, 0) 8.1631 9.4330 11.556 16.347 31.585 93.801
(100, —0.5) 3.9221 4.5365 5.5599 7.8671 15.203 45.153
7,0 9.5394 11.022 13.501 19.097 36.896 109.57
(7,0.5) 7.4243 8.5782 10.508 14.863 28.715 85.276
(7,0) 48184 5.5673 6.8194 9.6460 18.636 55.344
7, —0.5) 2.0241 2.3387 2.8647 4.0521 7.8287 23.249
0.7, 6.8730 7.9414 9.7285 13.578 26.583 78.942
0.7, 0.5) 5.2959 6.1191 7.4954 10.602 20.483 60.828
{0.7,0) 4.2556 49171 6.0230 8.5191 16.459 48.879
(0.7, —0.5) 1.9853 2.2939 2.8098 3.9743 7.6786 22.803
Table 4. The ratio of the minimum critical values G* = Gr¥*/Re*¥? for Pr = 1000 and 100
¢ = 15° ¢ = 30° ¢ = 45° ¢ = 60° ¢ =75 ¢ = 85°
G;r: 1600 G;rac 1608 G?”r's 1000 G:r= 1000 G;r: 1080 G§r= 1008
n G0 G¥ 00 G¥eio0 Gheroo G100 G0
1 1.0170 1.0170 1.0170 1.0170 1.0165 1.0165
0.5 1.0195 1.0193 1.0192 1.0191 1.0190 1.0191
0 1.0243 1.0241 1.0240 1.0238 1.0237 1.0237
—~0.5 1.0373 1.0370 1.0364 1.0361 1.0359 1.0359

mode of instability when ¢ = 0°, that is, when the
plate is horizontal. This susceptibility to instability
diminishes as ¢ increases, eventually attaining an
absolutely stable condition when ¢ = 90° (i.e. when
the plate is vertical). From Figs. 14 and 15, one can
see that the results of the present analysis bring the
predicted critical Re¥ and Gr} values closer to the
experimental results for air [4, 7, 8] and for water [6],
but large discrepancies in the results still exist between
the theory and experiments. To remedy the dis-
crepancy between the two sets of results, further
analyses using different approaches, such as linear

perallel flow model [3)
preseat study

e BX DO IMENE, Bir [8]
f—— e #xpOr-iment, air [}
e X PO IMEN, 810 [7]

Pr=07
n=0 (UNT) J

o
Gwo®

Fi1G. 14. Critical Reynolds number vs critical Grashof num-
ber for various inclination angles, Pr = 0.7.

theory with time-dependent amplitude function or
nonlinear theory, appear to be in order.

CONCLUSION

In this paper, thermal instability of mixed con-
vection in laminar boundary-layer flow over hori-
zontal and inclined flat plates with power-law vari-
ation in the surface temperature has been investigated
analytically using the linear theory based on a non-
parallel flow model. Neutral stability curves as well as
critical Reynolds number, critical Grashof number,

10°

.......... parallel flow model (2]
——— e 7 1 7.1 3111 0V
PR—— 7 P YT R Y1)

Pr=7
n=0 (UWT} e

FiG. 15. Critical Reynolds number vs critical Grashof num-
ber for various inclination angles, Pr = 7.



1924

and critical wave numbers are presented for Prandtl
numbers of 0.7, 7, 100, and 1000, covering a range
of exponent values —0.5 < n < 1.0 and inclination
angles 0” < ¢ < 85°. The major findings from the pre-
sent study are:

(1) For the power-law variation in the wall tem-
perature, both the critical values of Gr*/Re**? and
wave number o* increase with an increasing value of
the exponent n for a given Prandtl number Pr or
inclination angle ¢.

(2) For a given value of the exponent n or Prandtl
number Pr, the critical value of Gr*/Re**? increases
with increasing inclination angle ¢. However, the criti-
cal wave number a* appears to be unaffected by the
inclination angle.

(3) The more rigorous analysis based on the non-
parallel flow model in the present study provides a
larger critical Gr¥*/Re*3> value than the previous
analyses based on the parallel flow model, thus bring-
ing the critical values closer to available experimental
data.
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INSTABILITE THERMIQUE NON PARALLELE DE LA CONVECTION MIXTE SUR DES
PLAQUES PLANES NON ISOTHERMES, HORIZONTALES ET INCLINEES

Résumé—Une théorie linéaire basée sur un modéle d’écoulement non paraliéle est utilisée pour étudier
I’apparition de I'instabilité tourbillonnaire longitudinale de la convection mixte laminaire sur des plaques planes
horizontales et inclinées avec température pariétale non uniforme 7, (x)— T, = Ax". Dans cette analyse,
on tient compte de la variation longitudinale de I'amplitude de la perturbation. Les courbes de stabilité
neutre, les valeurs critiques du paramétre G* = Gr*/Re**” et du nombre d’onde a* sont présentés pour
des nombres de Prandtl Pr = 0,7, 7, 100 et 1000, un exposant # tel que —0,5 €< n < 1,0 et un angle
d’inclinaison 0° < ¢ < 85°. Pour un nombre de Prandtl et un angle d’inclinaison donnés, I'instabilité
thermique diminue quand # augmente. Pour des valeurs données de n et de Pr, la valeur critique de G*
croit avec I'angle d’inclinaison. Le nombre d’onde critique «* semble étre indépendant de I'angle d’in-
clinaison. Les résultats de cette analyse sont comparés a ceux d’autres études analytiques et expérimentales.
Selon I'étude faite, la dépendance de 'amplitude est trouvée avoir un effet stabilisant en comparaison avec
le cas de I’analyse de I"écoulement paralléle qui néglige cette dépendance.
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NICHTPARALLELE THERMISCHE INSTABILITAT BEI MISCHKONVEKTION AN
NICHTISOTHERMEN HORIZONTALEN UND GENEIGTEN EBENEN PLATTEN

Zusammenfassung—Eine lineare Theorie auf der Grundlage nichtparalleler Strémung wird bei der Unter-
suchung des Einsetzens der Lingswirbelinstabilitdt bei laminarer Mischkonvektion an horizontalen und
geneigten ebenen Platten mit variabler Oberflichentemperatur (7,(x)— T, = 4 * x") zu untersuchen. Dabei
wird eine strdmungsabhéngige Funktion der Stérungsamplitude beriicksichtigt. Kurven neutraler Stabilitit
sowie kritische Werte des Parameters G* = Gr¥/ Re**'* und Wellenzahlen a* werden fiir folgende Parameter
vorgestellt : Prandtl-Zahl Pr =0,7; 7; 100 und 1000, Exponenten n von —0,5 bis 1,0, Neigungswinkel
0° < ¢ < 85°. Fiir gegebene Werte der Prandtl-Zahl und des Neigungswinkels nimmt die thermische
Instabilitit mit steigenden Werten des Exponenten » ab. Bei gegebenen Werten des Exponenten # und der
Prandtl-Zahl Pr nimmt der kritische Wert von Gr¥ Re**” mit zunehmendem Neigungswinkel gegeniiber
der Waagerechten zu. Die kritische Wellenzahl a* jedoch scheint unabhdngig vom Neigungswinkel zu sein.
Die Ergebnisse aus der hier vorgestellten Untersuchung mit nichtparalleler Strémung wird mit verfiigbaren
analytischen und experimentellen Ergebnissen verglichen. Wird die stromungsabhingige Ampli-
tudenfunktion bei der nicht-parallelen Stromungsanalyse beriicksichtigt, so bedingt dies einen Sta-
bilisierungseffekt gegeniiber Modellen, welche diese Abhidngigkeit nicht beriicksichtigen.

TEIUIOBASI HEYCTOMYUBOCTD HEIAPAJUIEJALHOI'O TEYEHUA IMPU CMEMAHHON
KOHBEKLIMM HA HEU30TEPMHUYECKHX IOPHU30HTAJIBHON U HAKJIOHHON
IMMIOCKHUX IJIACTHHAX

ApnoTaums—JIMHelHag Teopua Ha OCHOBE MOMEJIHM HENAPAJINENIBHBIX TeYEeHHH MCMOJb3YeTC A1 HCcie-
JOBaHUS BO3HMKHOBEHHA NMPOJOJLHON BHXpEBOH HEyCTOHYMBOCTH NAMHHAPHOTO MOTOKA MPH CMeELIaH-
HOHM KOHBEKIHH, OOTEKAIOUIEr0 FOPH3OHTANILHYIO H HAKIOHHYIO IUIOCKHE IIaCTMHBI C TEMIepaTypoi
NOBEPXHOCTH, H3MeHsIoLIeHCA 1o 3akoHy T.(x) — T,, = Ax". B aHanu3e yyHTRIBacTCS HEOAHOPOOHOCTD
NO NMOTOKY aMILTATYAHBIX QyHKUMH Bo3Myuienns. [IpuBoaaTca HelTpasibHble KPHBblE YCTOHYMBOCTH, a
TaKXke KPUTHYECKHe 3HAa4eHHs napaMeTtpa G* = Gr*/Re*>? u BonHoBhe yucna o* ans wncen Ipangrns
Pr=0,7; 7; 100 u 1000 B HHTepBane 3HaYeHH#l noxa3aTens crenen —0,5 < n < 1,0 u yriioB HaKJIOHA
0° < ¢ < 85°. Ipu 3ananHbix wucne [IpaHATIA K yrile HaKJIOHAa HAMOEHO, YTO HEYCTOMYMBOCTH YMEHB-
IIAETCA C POCTOM 3HayeHHs n. KpoMe Toro, npu yka3zaHHBIX 3HAYEHMSX NMOKA3ATEJSl CTENECHH N U YHCIE
HMpanarna Pr kxputudeckoe 3HaveHue Gr¥/Re*? BospacTaeT ¢ yBeJHYEHHEM YIia HAKJIOHA OTHOCHTE-
JBHO ropu3oHraimd. OJHAKO OKa3anoch, YTO KPHTHYECKOE BOJHOBOE HHCIO «* HE 3aBHCHT OT yria
HakJioHa. Pe3yibTaThl NpOBEAEHHOIO aHAIN3a CPaBHUBAIOTCS C HMEIOLMMNACH AHATHTHYECKMMH H 3KC-
NEPHMEHTAIbHBIMA JaHHBIMH NPEABIAYLIHX HCCICHOBAaHHWM. AHAJM3 MoOKa3al, YTO Henapajuie/ibHbIE
TeYEHHs NPH Y4YeTe HEOJHOPONHOCTH AMILUTHTYAHLIX QYHKLMIA B MOTOKE OKa3bIBAIOT CTAa0HIH3HpYIOLUee
BJIHSHHE B OTJIHYHE OT MAPaJLIENIBHOTO TEYEHNA B IpeHeOPEKEHHH 3TOM 3aBHCHMOCTBIO.
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